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A method is presented to calculate ef®ciently small-angle

neutron and X-ray solution scattering intensities from explicit-

atom models of macromolecules and the surrounding solvent.

The method is based on a multipole expansion of the

scattering amplitude. It is particularly appropriate for

extensive con®gurational averaging, as is required for

calculations based on computer-simulation results. In test

calculations, excellent agreement with experiment is found

between neutron and X-ray scattering pro®les calculated from

a molecular-dynamics simulation of lysozyme in water. The

question of de®nition of the protein surface is also addressed.

For comparison with the continuum model, an analytical

envelope around the protein is de®ned in terms of spherical

harmonics and is calculated using a Lebedev grid. The

analytical surface thus de®ned is shown to reproduce well

the scattering pro®le calculated from the explicit-atom model

of the protein.
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1. Introduction

The purpose of most computational techniques for inter-

preting small-angle scattering (SAS) is to derive the low-

resolution particle structure from the observed scattered

intensity. Examples of model-®tting approaches for this are

given in Henderson (1996), Zhang et al. (1996) and Svergun

(1999). However, as small-angle solution X-ray and neutron

scattering (SAS) techniques improve, it is becoming of

increasing interest to develop methods for rapid evaluation of

SAS pro®les from explicit-atom coordinates (see, for example,

Pickover & Engelman, 1982; Svergun et al., 1995, 1998).

Explicit-atom models of biological macromolecules are

available from X-ray crystallography and NMR spectroscopy.

Many of these models also contain a partial description of the

water of hydration of the system. In addition, molecular-

dynamics (MD) simulation is frequently used with explicit

solvent to examine detailed macromolecular and solvent

properties in atomic detail.

In this paper, we present a method for rapidly evaluating

SAS pro®les from explicit-atom models. The accompanying

program is called SASSIM (Small-Angle Scattering SIMula-

tion). The method uses a multipole expansion that ef®ciently

calculates the spherically averaged scattering pattern from the

model system. For subsequent analysis, an analytical envelope

representing the protein surface is de®ned.

To test the method, the results of a molecular-dynamics

(MD) simulation of hen egg-white lysozyme in explicit water

are used and compared with the corresponding experimental

pro®les obtained from Svergun et al. (1998), who performed



X-ray scattering in H2O and neutron scattering in H2O and

D2O. The calculated and experimental pro®les are in good

agreement, tesitifying to the accuracy of the method. The

importance of inclusion of the explicit solvent molecules is

demonstrated. Finally, it is shown that the continuum model of

the protein calculated using the analytical envelope repro-

duces well the scattering from the explicit-atom model of the

protein.

2. Methods

2.1. Small-angle scattering

SAS techniques provide information on low- and medium-

resolution structural features of the examined system (see

Higgins & Benoit, 1994). The coherent neutron scattering

intensity I is a function of the scattering vector q and is de®ned

as a product of the total scattering amplitude,

A�q� �PN
j

bj exp�ÿiqrj�; �1�

and its complex conjugate A*,

I�q� � A�q�A��q� �PN
ij

bibj exp�ÿiqrij�; �2�

where rij = ri ÿ rj and the summation is over N scatterers, j of

scattering length bj. The scattering vector q is related to the

scattering angle 2� and the wavelength of the incident radia-

tion � by the equation |q| = (4�/�)sin�. For X-ray scattering, bj

is determined by the electron density �j(r) of atom j,

bj!bj(q) =
R
�j�r� exp�iqr� dr3. The X-ray scattering lengths

are q dependent.

As molecules in solution scatter isotropically, (2) must be

orientationally averaged, which we denote hi
. Moreover,

since the system undergoes con®gurational changes during the

experiment/simulation, one also needs to include con®gura-

tional averaging of the system, denoted by hic,

I�q� � hhI�q�i
ic �
P

ij

bibj

sin�qrij�
qrij

� �
c

: �3�

The experimental conditions of solution scattering lead to

results which can be interpreted owing to the excess scattering

from the scattering object, i.e. from the protein and the solvent

perturbed from the bulk. Therefore, it is convenient to

distinguish between two parts of the scattering object. The ®rst

part, which gives rise to the excess scattering, consists of the

protein plus all solvent that contains perturbation of the time-

averaged density from the bulk. The second part consists of

bulk solvent which is characterized by the scattering length

density b0 ± this provides the reference scattering density and

does not contribute to the excess scattering.

We de®ne a model system to be one protein molecule

(lysozyme in the present test case) surrounded by water

molecules forming a sphere centred at the centre of mass of

the protein (Fig. 1). The radius R of the sphere is chosen to be

suf®ciently large that the time-averaged density of the water in

the outer shell, �0, is homogeneous and that of bulk water. In

other words, the in¯uence of the protein on the density of the

solvent shell in this region is negligible. This assures that there

is no excess scattering arising from the ®nite size of the model

scattering system. The value of R in the present calculations

was 34.2 AÊ and � was chosen to be 4 AÊ .

In the present calculations, the excess scattering density is

determined from all explicit atoms in the MD simulation, i.e.

all protein and water atoms j = 1, . . . , N within radius R. The

effect of the solvent outside radius R is modelled by a conti-

nuum and invokes Babinet's principle (see Fraser et al., 1978).

According to this principle, the scattering lengths bj are

corrected in the following way,

bj ! bj ÿ Vj
�b0fj�q�; �4�

where Vj is the volume displaced (excluded) by the jth explicit

atom, �b0 is the bulk scattering density of the solvent and fj(q) is

the normalized Fourier transform of the shape of the excluded

volume associated with atom j.

Including rede®nition (4) in (1) together with the time

dependence of the explicit-atom coordinates gives the total

excess scattering amplitude,

A�q; t� � A0�q; t� ÿ B0�q; t�; �5�

where

A0�q; t� �PN
j

bj exp�ÿiqrj�t�� �6�

and
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Figure 1
The model system. The average distribution of the explicit water in the
outer shell �0 of thickness � is used for determination of properties of
the bulk solvent.
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B0�q; t� � �b0

PN
j

Vjfj�q� exp�ÿiqrj�t��: �7�

A0(q, t) is the scattering amplitude of the atomic detail system.

rj(t) denotes the time-dependent radius vector of the jth atom.

B0(q, t) describes the scattering amplitude of the system

volume that is excluded from the background uniform bulk

solvent and is modelled using virtual atoms as described later.

The bulk scattering density �b0 can be determined for each type

of scattering from the outer shell �0 or, alternatively, from a

separate pure solvent simulation. In the former case, the

spherically averaged scattering is given by

�b0�t� �

P
j2�0

bj sin�qrj�t��=qrj�t�

4�
RR

Rÿ�

r2 sin�qr�=qr dr

:

In the test case, for both methods for determining �b0 the same

results were obtained, con®rming that the outer shell water is

not perturbed from the bulk. The following �b0 values resulted:
�b0(X-ray) = 0.3419 AÊ ÿ3, �b0(n-H2O) = ÿ0.5694 � 1010 cmÿ2

and �b0(n-D2O) = 6.486 � 1010 cmÿ2. The values were found to

converge. They were obtained averaged over 2000 con®gura-

tions of the system corresponding to each 0.2 ps frame in the

simulated trajectory from 100 to 500 ps. The above values of �b0

differ slightly from that of pure water, as nine chloride ions

were included in the simulation as explained in x2.2. However,

we also ran a simulation of the same system without ions and

found no signi®cant difference in the scattered intensities. The

calculated X-ray �b0 was then 0.3348 AÊ ÿ3, which is in excellent

agreement with the theoretical value for pure water

(0.3342 AÊ ÿ3).

Finally, the small-angle excess scattering intensity can be

expressed as

I�q� � hhjA0�q; t� ÿ B0�q; t�j2i
it; �9�
where the con®gurational average hic is replaced by the MD-

simulation time average hit.
It has been shown that one obtains the expected behaviour

of the corrected scattering lengths (4) for X-ray scattering if

the atomic excluded volumes are represented by Gaussian

spheres instead of a uniform volume Vj (Fraser et al., 1978).

The excluded volume density, Gj�r�, is then given by

Gj�r� � exp ÿ r

�j

� �2
" #

; �j �
V

1=3
j

�1=2
; �10�

where the constant �j is determined from the normalization

condition
R Gj�r� dr3 = Vj. Here, the Gaussian spheres are also

used for representing the excluded volume in the neutron

scattering calculations.

The Fourier transform of a Gaussian sphere is again

Gaussian and corresponds to the `excluded' atomic form

factor,

fj�q� � Vj exp ÿ q2V
2=3
j

4�

 !
: �11�

To determine the excluded volumes, Vj values are taken from

International Tables for X-ray Crystallography (1974, Vols. III

and IV) and scaled. For the water, the scaling factor �s is

adjusted such that

�s

P
i2�0

Vi

* +
t

� V�0
; �12�

where the summation includes all the atoms in the outer shell

�0 and the average is taken over all MD frames. The excluded

volumes of the solvent atoms are then Vi!�sVi.

The protein atom excluded volumes are then determined as

follows. From the system trajectory the average number of

water molecules hNwi within the sphere of radius R is calcu-

lated. Owing to the large amount of water used, the pertur-

bation of the average solvent density by the protein

is small. In this case the protein volume Vp is Vp = (4�R3/3)

ÿ hNwi�s(2VH + VO), where VH and VO are the tabulated

excluded volumes of the H and O atoms, respectively.

Consequently, the excluded volumes of the protein atoms are

rescaled by �p, which follows from �p

P
i2p Vi = Vp, where i runs

over all protein atoms. Values of �s = 1.49 and �p = 1.02 were

found in the present test case. That �p is close to one testi®es to

the correctness of the tabulated atomic excluded volumes for

proteins. The difference in the scaling factors �p and �s is

consistent with the ®nding that the packing densities of

proteins are close to optimal, whereas that of water is not

(Harpaz et al., 1994).

The scattering amplitude of the background is then

B0�q; t� �PN
j

�s=p
�b0V2

j exp ÿ q2V
2=3
j

4�

 !
exp�ÿiqrj�t��: �13�

Here, multipole expansions are used for the representation of

total scattering amplitudes, A0 and B0, permitting fast

evaluation of the spherically averaged scattering intensities.

This approach was ®rst applied by Stuhrmann (1970a) and is

also used in the program CRYSOL (Svergun et al., 1995).

The simulation system was selected to be suf®ciently large

that the excess scattering in the outer shell (de®ned in Fig. 1) is

negligible, i.e. I(q) in (9) is effectively zero when it is calcu-

lated with the index j (6 and 7) running only over the outer

shell atoms. Moreover, simulation frames were deleted from

the I(q) calculation if the individual bulk scattering density
�b0�t� in (8) happened to deviate more than � (the standard

deviation of f �b0�t�g) from the average value of �b0. Thus, we

have a smooth transition to bulk water behaviour, all time-

averaged ¯uctuations from the bulk are encompassed within

our simulation volume and thus the simulation volume is not a

source of error.

However, in contrast to CRYSOL, the present method

allows analysis of explicit solvent, avoiding the use of a

continuum model of the hydration layer. All required para-

meters, such as the background scattering density and the

solvent atom excluded volumes, are determined a priori from

the simulation data. The present method does not require a

model for the protein surface and therefore does not produce

results that depend on this model.



To perform the multipole expansions of scattering ampli-

tudes, the following well known relation is used (see Abra-

mowitz & Stegun, 1970),

exp�iqr� � 4�
P1
l�0

Pl

m�ÿl

iljl�qr�Y�lm�!r�Ylm�
q�; �14�

where jl denotes a spherical Bessel function. The notations

r = (r, !r) and q = (q, 
q) are also used here.

The multipole expansions of the scattering amplitudes are

A0�q; t� �P
lm

A0
lm�q; t�Ylm�
q�;

A0
lm�q; t� � 4�il

PN
k

bkjl�qrk�t��Y�lm�!rk
�t��; �15�

B0�q; t� �P
lm

B0
lm�q; t�Ylm�
q�;

B0
lm�q; t� � 4�il �b0

PN
k

Vkfk�q�jl�qrk�t��Y�lm�!rk
�t�� �16�

and the intensity (9) can then be expressed using only multi-

pole coef®cients,

I�q� � P
lm

jA0
lm�q; t� ÿ B0

lm�q; t�j2
� �

t

: �17�

(16) and (17) were evaluated for each set of coordinates

generated in the simulated trajectory of the system and

averaged to obtain the ®nal SAS pro®les. The multipole

expansion in (16) and (17) turned out to fully converge for

l� lmax, where lmax = 17, when evaluating the scattering pro®le

0 � q � 0.5 AÊ ÿ1.

Finally, in order to compare the calculated neutron scat-

tering results with experiment the wavelength spread of the

neutron beam is included and the calculated intensity modi-

®ed by the resolution function R(q, q0) (see Pedersen et al.,

1990)

I�q� � R R�q; q0�I�q0� dq0; �18�

R�q; q0� � 1

�2��1=2�
exp ÿ �qÿ q0�2

2�2

� �
; � � ��

�

q

2�2 ln 2�1=2
;

where ��/� is in the present case 0.1 (Svergun et al., 1998). For

calculation of the neutron scattering pro®le in the D2O solu-

tion the water and labile protein protons were exchanged for

deuterium.

2.2. MD simulation

The simulation was performed in the canonical ensemble

using the CHARMM (Brooks et al., 1983) program, version

27b1. All protein and solvent atoms were treated explicitly.

The 1.33 AÊ resolution structure of hen egg-white lysozyme was

taken from the Protein Data Bank, entry 193l (Vaney et al.,

1996) and was embedded in an explicit aqueous environment.

The missing H atoms in the crystal structure of the lysozyme

were placed using the HBUILD method (BruÈ nger & Karplus,

1988). For convergence in the scattering-pro®le calculations a

suf®ciently large amount of water was needed. A box of

equlibrated water with the form of truncated octahedron

originating from a cubic box of side length 84 AÊ was used. The

TIP3P water model was used for the water (Jorgensen et al.,

1983). After immersing the protein into the box of water and

removing all the water molecules within 2.7 AÊ of any protein

8577 water molecules remained. In order to electrostatically

neutralize the system, nine chloride ions were also included at

random positions. This was required so as to enable the use of

the Ewald method in representing the electrostatics in the

simulation.

The system was simulated with periodic boundary condi-

tions as an isothermal±isobaric (NPT) ensemble at T = 300 K

and p = 101 kPa. The total simulation time was 500 ps, which

was found to be suf®ciently long for accurate sampling of the

relevent system con®gurations. The average RMS heavy-atom

deviation from the crystal structure was to be 1.72 AÊ indi-

cating that the protein structure was conserved. For analysis

the trajectory from 100 ps to 500 ps was used and coordinates

saved every 0.2 ps. Fuller details of the simulation will be

published elsewhere.

2.3. Definition of the protein surface

The above method for calculating the explicit-atom scat-

tering pro®les does not require the de®nition of a protein

surface. However, for subsequent analysis it is useful to have

such a de®nition and indeed a protein surface is a useful

concept in many areas of biophysics. It is of particular interest

here in the derivation of a continuum model that reproduces

the explicit-atom SAS results for the protein atoms. The way

in which this surface passes between the two regions cannot be

uniquely de®ned. A variety of possibilities exists; for example,

a contour surface of electronic charge density, a molecular van

der Waals surface generated by fused atomic spheres, a

solvent-accessible surface, a Voronoi surface etc. (Lee &

Richards, 1971; Connolly, 1985).

Consider the representation of individual atoms as spheres

of some suitably de®ned radii. Various choices have been

proposed for atomic radii according to the property that they

represent, e.g. excluded volume, electron density, electrostatic

potential etc., and the molecular surface obtained with these

atomic radii indeed depends on this choice. The individual

atom representation leads to a model of fused spheres that has

a well de®ned envelope describing the protein surface.

However, this envelope forms a very rough surface, owing to

the junctions between the spheres. To obtain a smoother

surface closer to an analytical envelope around the protein, we

approximate each atom by a Gaussian sphere Gj as in (10),

whose volume Vj corresponds to that of a normal sphere of

radius rj.

Since many proteins have an approximately globular

structure, we make use of spherical coordinates (r, �, ') with

their origin at the centre of mass of the protein. A mesh of

points is constructed on the spherical surface, each point

representing a direction !k = (�k, 'k). Starting at a distance far

from the protein, one can move towards the protein centre of

mass along any given radial direction !k in a sequence of
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distances rk1 > rk2 > rk3 > . . . . At each point rk� the contri-

bution from the protein atoms to the volume density function

V is calculated,

V�rk�� �
P

j

Gj�rk�� �
P

j

exp ÿ��rk� ÿ Rj�=�j�2
� 	

: �19�

The same procedure is performed with the solvent atoms but

in the reverse direction, i.e. sampling the solvent volume

density function from the interior to far outside the protein. In

both directions monotonically increasing functions are

obtained. Their intersection is considered to de®ne locally the

protein surface along the direction !k, which we denote by

SP!k. This de®nition considers equally both protein and

solvent atoms, in the spirit of the Voronoi de®nition of a

molecular surface (Voronoi, 1908).

Projecting the surface points rk onto a spherical harmonics

expansion allows the protein surface to be represented as an

analytical function of the radial angles � and '. This formu-

lation was ®rst introduced by Stuhrmann (1970b).

We recall that it is always possible to expand an arbitrary

single-valued function F(r) over spherical harmonics Ylm(!),

F�r� � F�r; !� ' FL�r; !� �
PL
l�0

Pl

m�ÿl

flm�r�Ylm�!�; �20�

where the expansion coef®cients flm(r) are de®ned by

flm�r� �
R2�
0

d'
R�
0

sin���F�r; !�Ylm�!� d�: �21�

The resolution of the expansion is determined by the trun-

cation value L.

The integral in (21) can be computed using the Gaussian-

like quadrature scheme of Lebedev (1975),R2�
0

d'
R�
0

sin���F�r; !�Ylm�!� d� �
PNp

k

wk sin��k�F�r; !k�Ylm�!k�:

�22�
The quadrature is performed by summing up the values of the

function sin(�)F(r, !)Ylm(!) at prede®ned directions !k

weighted by constants wk.

In the Lebedev scheme all directions !k correspond to the

nodes of the octahedral grids that provide the optimal ef®-

ciency, i.e. the highest accuracy with the least possible function

evaluations. In order to integrate an arbitrary angular function

which is assumed to have an exact expansion over spherical

harmonics for l � L, we need to sample this function at the

least possible number of points Np.

Here, the Lebedev grid is applied with Np = 434 points,

which is suf®cient for accurate integration of functions with

resolution L = 35, i.e. functions having exact spherical

harmonic expansion for l, 0� l� 35. The directions of the grid

points !k and the weights wk were taken from Treutler &

Ahlrichs (1994). To our knowledge, Lebedev grids are avail-

able for up to 1202 points, accurate for L = 59.

According to (20) we express the protein surface SP by its

multipolar expansion of resolution LS, Sl, providing the

analytical form of the surface,

SP�!� ' Sl�!� �
PLS

l�0

Pl

m�ÿl

RlmYlm�!�: �23�

As the protein surface is a real function, real spherical

harmonics Y lm can be used, de®ned as

Y lm �
m> 0 1=21=2�Ylÿm � �ÿ1�mYlm�
m � 0 Yl0

m< 0 i=21=2�Ylÿm ÿ �ÿ1�mYlm�

8<: : �24�

Given SP(!k) = rk, the coef®cients Rlm are obtained by means

of projections

Rlm �
R2�
0

d'
R�
0

sin���SP�!�Y lm�!� d� �
PNp

k

wkrkYlm�!k�: �25�

The integrand in (25) consists of two product functions, SP(!)

and Y lm�!�. The allowed resolution L for exact integration is

related to the whole integrand. In other words, the maximum

dimension of the integrand in the space spanned by spherical

harmonics is L, which is equal to 35 for this type of Lebedev

grid.

The dimension L of the function in the space of the sphe-

rical harmonics is the direct sum of dimensions of the

composing product functions l1 and l2, L = l1 � l2. Inserting

(23) into (25) makes it clear that the highest resolution LS of

the surface SP one can afford is at most L/2 (another L/2 drops

to Y). In the present case, the maximum resolution of the

surface is therefore LS = 17. In the following, we will assume

SP(!) = Sl(!).

As any de®nition of a molecular surface contains a degree

of arbitrariness, it should be tested by computation of

measurable physical quantities. In the present case, the

appropriate quantity is the SAS intensity. Here, we compute

the X-ray SAS pro®le for the continuum model of the protein

that is de®ned by the surface SP(!) and compare this with that

obtained from the full atomic protein structure. For the

continuum protein one obtains the following multipole co-

ef®cients of the scattering amplitude,

Clm�q� � il�2=��1=2
R
!

d!Y�lm�!�
R SP�!�

0 jl�qr�r2 dr; �26�

while those for the atomic structure are given by (16), with

index k running over only the protein atoms. The corre-

sponding continuum model intensities are obtained through

summing the squares of the multipole coef®cients.

3. Results

The calculated SAS intensities are compared with experiment

in Fig. 2. � values, a measure of the similarity between the

calculated and experimental pro®les, are given in Table 1. The

agreement between the simulation-derived and experimental

pro®les is found to be excellent and the differences in the

pro®les for the three types of experiment are also well

reproduced.

In the limit q!0, the Guinier approximation to the scat-

tering intensity gives,



I�q� ' I0 exp�ÿq2R2
g=3�; �27�

allowing the radius of gyration Rg of the scattering object to be

obtained (Guinier, 1939). The radii of gyration from the

different types of scattering extracted from the experimental

and calculated scattering pro®les are listed in the second and

third columns of Table 1. These are also found to lie within the

experimental error. These Rg values can also be compared

with the `true' value 14.12 � 0.10 AÊ obtained from the mass-

weighted atomic structure of the protein, R02g = 1=M
Pn

i �mir
2
i ),

where M =
P

i mi. The systematic error �0.10 AÊ in the MD-

derived geometric radius of gyration arises from the internal

protein dynamics. One can see that the true value is about 5%

overestimated by the X-ray technique, meaning that the

solvent effects result in the protein appearing larger with

X-rays. This suggests an increase of the solvent density in the

hydration shell, which is consistent with Svergun et al. (1998).

Rg values turn out to be underestimated 5±10% by neutron

scattering. The protein in D2O solution has a negative contrast

with respect to the background scattering length density �b0,

while in H2O solution the protein is positive with respect to

the background. In both cases, the increase of the solvent

density in the hydration shell reduces the apparent radius of

gyration. The origin of difference in Rg values is therefore in

the non-uniform distribution of scattering lengths in the

systems and different contrasts provided by different back-

ground scattering length densities �b0.

An important question concerns to what extent the

perturbation of the solvent from the behaviour of bulk water

in¯uences the calculated SAS pro®les. To examine this, SAS

pro®les were computed and compared in which the solvent

perturbation effect is included (by including all protein and

solvent atoms in the summations over k in equations 16 and

17) and when they are neglected (including only the protein

atoms, with the entire solvent region modelled as bulk conti-

nuum). The � values in Table 1 show that in all three types of

scattering experiment the calculated pro®le is signi®cantly

closer to the experimental one when the solvent molecules are

explicitly included.

We now examine whether the surface-dependent conti-

nuum model of the protein allows the SAS data generated

from the explicit-atom protein model to be reproduced. To do

this, the L = 17 excluded volume protein surface was calcu-

lated and the interior region de®ned as a continuum. It was

found that resolution L = 17 is suf®cient for obtaining

convergent results for X-ray SAS intensities at q < 0.5 AÊ ÿ1.

(26) and (16) were used to derive the multipole coef®cients of

the continuum and atomic models, respectively. The corre-

sponding intensities, obtained by summing the squares of the

coef®cients, are shown in Fig. 3. Good agreement is seen for

small q, the region of the pro®le responsible for the size and

shape of the scattering object. The less good agreement for

q > 0.2 AÊ ÿ1 is as expected and is a consequence of the lack of

internal structure in a continuum model. In additional calcu-

lations the surface was radially expanded and contracted by

varying d and the corresponding pro®les were calculated. The

RMS deviation of the calculated spectrum from the explicit-

atom model [��d�] is shown in Fig. 3. The best agreement

between the continuum and explicit-atom model is obtained

for d close to (slightly less than) zero, which corresponds to the

calculated surface. The radius of gyration as a function of d is
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Figure 2
Comparison of calculated (solid lines) with experimental (crosses) SAS
pro®les of protein in solution for different types of scattering. The
experimental data are from Svergun et al. (1998). (a) X-ray SAS in H2O.
(b) Neutron SAS in H2O. (c) Neutron SAS in D2O.

Table 1
Comparison between simulation-derived and experimental radii of
gyration for different types of scattering.

The quality of the agreement is given by the � function de®ned as
�2 = [1/(N ÿ 1)]

PN
i {[Icalc(qi) ÿ Iexp(qi)]/�i}

2,where �i denotes the standard
deviation of the ith experimental point. � is given for calculations in which the
solvent molecules are included explicitly (P + S) and when they are
represented as an unperturbed continuum (P). The X-ray results are in
signi®cantly better agreement with experiment than the neutron pro®les,
owing to the improved statistical accuracy of the experimental X-ray pro®le at
high q. Radii of gyration were obtained by ®tting the pro®les to (27) in the
range qRg < 1.

Rexp
g (AÊ ) Rcalc

g (AÊ ) �2(P) �2(P + S)

X-ray 15.4 � 0.2 15.25 � 0.19 0.902 0.614
Neutron in H2O 13.8 � 0.2 13.62 � 0.24 2.883 2.774
Neutron in D2O 12.4 � 0.2 12.45 � 0.22 2.085 1.916
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also shown in Fig. 3 and is also found to coincide with the

explicit-atom radius of gyration at d ' 0. These results concur

in indicating that the excluded volume L = 17 is a good

reference surface for representing the SAS pro®les. A three-

dimensional plot of the L = 17 surface is shown in Fig. 4.

4. Conclusions

The present method ef®ciently calculates SAS pro®les from

explicit-atom models of proteins and the surrounding solvent.

The use of a multipole expansion allows rapid calculation of

the SAS pro®les from multiple con®gurations of systems of

large numbers of atoms. Without using a multipole expansion

the computational costs scale as N2, where N is the number of

atoms. In the present case, they scale as N(lmax +1)2, where lmax

is the multipole expansion truncation value. The speed-up for

our system consisting of�20 000 atoms is therefore a factor of

�50 for lmax = 17. As such, the method is particularly suitable

for the computation of SAS data from computer simulations,

such as molecular dynamics or Monte Carlo, where many

con®gurations have to be evaluated. In the present case, the

pro®le was calculated averaged over �2000 con®gurations.

Here, the published experimental lysozyme SAS pro®les for

X-ray scattering in H2O and for neutron scattering in H2O and

D2O were compared with the results of an MD simulation of

the same system. Excellent agreement with experiment is

seen. This result provides impetus for further work aimed at

using the detailed information present in the MD simulation

to decompose the contributions to the scattering pro®le and,

in particular, the effect of the protein on the average water

structure in the ®rst layer of hydration.

The SASSIM program also includes a method for de®ning

the protein surface, again using spherical harmonics. The

analytical protein envelope will be of use in many problems in

biophysics that require continuum models for the solvent and/

or protein. Because of the truncation of multipole expansion

in (23) and the ®nite number of grid points NP in (25) the

surface SP(�, ') is not hermetically closed for protein atoms,

meaning it does not adjust optimally to all cavities and ridges

on the `true' protein surface. The proposed de®nition of the

model protein surface also does not represent cavities at

directions ! where the `true' protein surface intersects the

corresponding radial line more than once. In this latter case

the model surface covers over the pocket. As a consequence,

there are a few protein atoms �n0p� outside the surface and a

few water molecules �n0w� inside. In the case of the model

surface expanded over spherical harmonics up to L = 17 for

lysozyme n0p ' 3 and n0w ' 120, compared with a total of �550

water molecules found in the ®rst 3 AÊ layer. However, the

principle followed here in de®ning the surface is not to

separate all the water from the protein, but rather to try to

Figure 3
Tests of the protein surface de®nition. (a) Scattering intensity calculated
from the full atomic detail and continuum protein models. (b) The
agreement factor between the true and continuum model as a function of
d, �(d). (c) The dependence of the continnum model radius of gyration on
d. The explicit-atom value is the dashed line.

Figure 4
Protein surface expanded over spherical harmonics up to Lmax = 17.



represent as much as possible of the surface at the smallest

possible computational cost. Furthermore, as demonstrated

here, the analytical envelope reproduces well the SAXS

pro®le calculated from the explicit protein atoms.
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